OMe

[A]

Þh

Intermolecular Transaminations of Enaminones: A Synthesis of Fused, Polycyclic, N-Aryl Pyridones[†]

Richard J. Friary,* Vera Seidl, John H. Schwerdt, Tze-Ming Chan, Marvin P. Cohen, Edward R. Conklin, Timothy Duelfer, Donald Hou, Mehdi Nafissi, Robert L. Runkle, Pirouz Tahbaz, and Robert L. Tiberi

> Schering-Plough Research Institute 2015 Galloping Hill Road Kenilworth, N. J. 07033-0539 U. S. A. and

Andrew T. Mc Phail*

Paul M. Gross Chemical Laboratories Duke University Durham, N. C. 27706 U. S. A.

(Received in USA 5 March 1993)

Abstract Aryl amines reacted with enaminones like (2-chloro-3-pyridinyl)[2-(1-pyrrolidinyl)-1-cyclopenten-1yl]methanone, and the transaminated products cyclized to aryl-substituted pyridones like 6,7,8,9-tetrahydro-9-phenyl-5H-cyclopenta[b][1,8]naphthyridin-5-one. The starting enaminones rearranged thermally, also forming pyridones, for example 9-(4-chlorobutyl)-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin-5-one.

INTRODUCTION

Some years ago, we sought to make fused polycyclic, N-aryl pyridones like the tricyclic, phenyl-substituted pyridone 4a.¹ Such compounds, we originally hoped, might have had desirable biological activities. We finally discovered that these N-aryl pyridones inhibited the 5-lipoxygenation of arachidonic acid and the release or biosynthesis of leukotrienes, and also exerted anti-allergy, anti-inflammatory, or immunomodulatory activities.²

When we began, the synthesis already adopted was the Claisen condensation, requiring 2-(arylamino)-3-pyridinecarboxylate esters to acylate the enolates of cyclic ketones. This method, although it enjoyed some successes, too often furnished mixtures of the starting esters with the final pyridones, giving only meager yields of the latter. In particular, the condensation of cyclopentanone and methyl 2-(phenylamino)-3-pyridinecarboxylate afforded only a 3% yield of pyridone **4a**. In this difficult case—and in easier ones as well—we could neither raise the unsatisfactory yields nor avoid tedious chromatographies. Varying the base, the base-to-ketone ratio, the solvent, the order of additions, and the time and temperature brought scant rewards.

hydrogens from the starting esters if these hydrogens were more acidic than the α -protons of the ketones. Then the resonance stabilized anion [A] would have formed and presented a formidable, electron-rich carbonyl group to (any) attacking enolates. Thus, the formation of anion [A] would have explained the presence of the starting esters in the product mixtures.

culty, we needed to boost the reactivity of the carbonyl carbon of the acylating agent. This suggested the obvious combination of an acid chloride and an enamine in a Cacylation reaction ³ Intermolecular transaminations of the products (3) were then to produce enaminones incorporating arylamines in place of the enamine-derived amines. which would be expelled (Scheme 1).⁴ Cyclizations of the transaminated enaminones to the aromatic pyridones 4 would drive the synthesis to completion.

Now we report that 2chloro-3-pyridinecarbonyl and 2-chloro-3-pyrazinecarbonyl

chlorides (1a and 1b, respectively) acylated the β -carbon atoms of cyclopentanone and cyclohexanone enamines (2) derived from pyrrolidine or morpholine. As expected, arylamines transaminated the resulting enaminones 3, and the transaminated products cyclized to the desired pyridones 4 (Scheme 1, Table 1). In addition, we present the scale and scope of the synthesis, and offer evidence that it proceeds through transaminated enaminones. We also disclose a novel enaminone-to-pyridone rearrangement as well as other enaminone reactions that limit the present synthesis. These other reactions, which were O-acylation and hydrolysis of enaminones 3, became apparent during efforts to improve the preparation of the biologically active pyridone 4k by an intermolecular transamination.⁵

No.

RESULTS AND DISCUSSION

Scale

In the first successful enamine Cacylation of this work, we exposed a cold chloroform solution of 1-(1-pyrrolidinyl)cyclopentene 2a (0.06 mole) and triethylamine to the acid chloride 1a. After one hour, workup and chromatography gave 84% of the crystalline enaminone 3a. Treatment of 3a with 1.25 equivalents of neat aniline at 110 °C converted it to pyridone 4a in a yield of 80%. The two steps yielded more than 20 times as much of pyridone 4a as the Claisen condensation did.

We also made pyridone 4a on a scale 100 times greater than the initial one, no development having been necessary to employ the larger quantities of chemicals. Thus, 2.3 kg

Table 1.	Tricyclic,	N-Aryl	Pyridones	4 from	Intermolecular
	En	aminone	Transamir	ations	

Yield (%) a

Substituents

	W	Y	Z	Ar	
4a 4b 4c 4d 4e 4f 4h	W CH CH CH CH CH CH CH CH N	T CH ₂ CH ₂	Z CH ₂ CH ₂	Ar Ph 3-MeO-C ₆ H ₄ 3-Cl-C ₆ H ₄ 4-MeO-C ₆ H ₄ 4-Me-C ₆ H ₄ 3,4-Cl ₂ -C ₆ H ₃ 3-pyridyl Ph	80 69 38 52 56 67 37
4i 4j 4k 41	N CH CH CH	CH ₂ (CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₂	CH ₂ CH ₂ CH ₂ CH ₂ CHMe	3-O ₂ N-C ₆ H ₄ Ph 3-Cl-C ₆ H ₄ Ph	32 28 45 28

 a Yields refer to isolated products and are based on amounts of acid chlorides 1a and 1b.

of acid chloride 1a furnished 2.5 kg of enaminone 3a, which was *Chart* isolated by crystallization. A 2-kg sample of this enaminone reacted with aniline to give 1.1 kg of the final product 4a. Pyridone 4k could also be made by this route on a relatively large scale.

Scope

Enaminone transaminations followed by cyclizations of the products to pyridones 4 were compatible with several structural variations in the starting materials. The heterocycle within the acid chloride was changed from pyridine (1a) to pyrazine (1b), affording products 4h and 4i (Table 1). The size of the carbocyclic ring in the enamine could be varied, and a change from a 5- to a 6membered ring yielded pyridones 4j, 4k, and 4i. The structure of the product 4l exemplified another simple variation in which a substituted ketone—namely 4-methylcyclohexanone—was used to form the enamine starting material. Differently substituted anilines could be employed for the transaminations, ultimately forming pyridones 4b-4f, for examples. Not surprisingly, a pyridylamine

as well as aliphatic amines could replace aniline derivatives in the transaminations. These other amines led to pyridones 4g (Table 1) and 4n-4q (Chart). The yields of products 4n-4q were respectively 48, 69, 51, and 40% from enaminone 3a. Beginning with the pyrrolidine enamine of β -tetralone, we could also prepare the tetracyclic pyridone 4m via the enaminone 3j (Scheme 4).

Mechanism

This pyridone synthesis proceeded by way of the expected, transaminated enaminones. It was possible to isolate and characterize five of them, which were intermediates 3e-3i (Chart). All of them possessed the amino groups corresponding to the amines added to bring about the transaminations; and all lacked the pyrrolidine and morpholine groups of the starting enamines 2. Intermediates 3e-3g cyclized to the desired pyridones, respectively 4k, 4n, and 4o.

Limitations

Although our synthesis was effective in nearly all cases tried, it suffered from three fundamental limitations. One of them was a novel thermal rearrangement of pyrrolidine or morpholine-substituted enaminones. This rearrangement changed enaminone **3a** to pyridone **5**, for example (Scheme 2).

Another limitation was the precedented enaminone Oacylation⁶ that competes with enamine C-acylation. In the present work, O-acylation of enaminone [3c] and 1,3-transfer of the acyl group formed the enol ester 12 (Scheme 3).

The third limitation was an enaminone hydrolysis followed by an unsought cyclization. This sequence of reactions gave fused polycyclic pyranones instead of pyridones. For example, it converted enaminone **3j** to pyranone **15** (Scheme 4).

Thermal Rearrangements. Our morpholine and pyrro-

lidine-bearing enaminones **3a**, [3c], and **3j** were somewhat unstable. For example, enaminone **3a** rearranged slowly (> 18 months (TLC)) at 25 °C and rapidly (1.5 h (¹H NMR), 90%) at 150 °C (Scheme 2). The unex-

pected product (5) had the structure of an alkylating agent, while another by-product, pyridone 6, which came from a separate experiment, had the structure of an alkylation product. Chromatography isolated 6 (5% from 3a) following an otherwise high-vielding (80%) transamination of 3a to 4a with aniline.

Rearrangement of enaminone 3a to 5 presumably takes place via the quaternary ammonium chloride [7]. Attack of chloride anion on either activated methylene group of [7] would convert this intermediate to pyridone 5 (Scheme 2, path a). Alkylation of aniline by 5 would then explain formation of by-product 6. Alternatively, ring cleavage of the quaternary ammonium salt [7] by aniline might have given $\mathbf{6}$ (path b).

Evidently the enaminone [3c] (Scheme 3) was also subject to thermal rearrangement. Indeed, the expected product (10) of such a rearrangement was among the by-products isolated after each of several successful attempts to convert compound [3c] to pyridone 4k. Enaminone 3j also rearranged to pyridone 14, despite the presence of aniline to form the desired pyridone 4m and toluenesulfonic acid to act as a catalyst (Scheme 4).

In one instance, the presence of acid seemed to suppress the enaminone rearrangement in favor of the desired pyridone. Treatment of enaminone 3a with 3.4-dichloroaniline and one equivalent of anhydrous toluenesulfonic acid raised the yield of pyridone 4f to 56%. Only 29% of this compound was obtained in the absence of the acid. Toluenesulfonic acid was added to protonate the oxygen atom of enaminone 3a, and to form the corresponding iminium tosylate [B] (right). The iminium ion in [B] would have played dual roles if it acted to raise the yield of 4f. It would have accelerated transamination by increasing the electrophilicity of the enaminone B-carbon atom. Also, the ion would have retarded rearrangement by decreasing the nucleophilicity of the enaminone nitrogen atom.

Enaminone O-Acylation, We soon learned that pyridone 4k was an interesting member of our biologically active series of compounds.⁵ The overall, optimized yield of this final product, however, never exceeded 45%, partly because the yield of its precursor [3c] was low. Thus, we sought to isolate and characterize the byproducts accompanying the enaminone [3c], hoping to improve our synthesis (Scheme 3). Instead we realized the second limitation of this synthesis, namely the tendency of acid chlorides to acylate the oxygen atoms of enaminones.

Treatment of 2- Scheme 3. Reactions of Enaminone [3c] chloro-3-pyridinecarbonyl chloride 1a with one molar equivalent of 1-(4morpholinyl)-cyclohexene gave a mixture of Cand O-acylation products (TLC). It was evident that the mixture contained an enol ester, because it absorbed at 1760 cm⁻¹. Chromatography afforded a pure sample of this ester, isolated in a yield of 11% and ultimately assigned structure 12 (Scheme 3). Using two molar equivalents of acid chloride 1a in the acylation raised the yield of enol ester 12 to 83%.

The initial basis for the assignment of structure 12 was a SINEPT experiment.⁷ In this experiment, a γ -pyridine proton (δ 7.88 ppm) of enol ester 12 coupled to the ketone carbonyl ¹³C atom (δ 192 ppm) over a threebond path (boldface). This finding excluded the isomer [11], because SINEPT experiments detect only three- or two-bond couplings of hydrogen to ¹³carbon atoms. At least five bonds (boldface) in [11] separate the γ -pyridine protons from the carbon atom of the ketone carbonyl. A single-crystal X-ray analysis confirmed our assignment of structure 12 (Figure).

The structure of 12 suggested that it was the product of a 1,3 acyl migration. Thus, we postulate that Oacylation of enaminone [3c] formed the enol-ester [13], which hydrolysed on work-up to give the enol ester [11] (Scheme 3). Acyl transfer within [11] would then have produced the isolated by-product 12, indicating that 12 was the more stable of the two enol ester isomers.

Enaminone Hydrolysis and Figure . Stereoview of the Sructure and Solid-State Conformation of Enol Cyclication. The third limitation Ester 12.

Cyclization. The third limitation arose from a combination of enaminone hydrolysis and cyclization of the product. These reactions changed certain enaminones to pyranones instead of pyridones, or to mixtures of both. For example, enaminone

3j furnished the tetracyclic pyranone **15** (31%) in addition to the desired pyridone (**4m**, 16%) (Scheme 4). Both products formed on treatment of **3j** with one equivalent of toluenesulfonic acid in hot benzene containing aniline. Cyclization of the 1,3-diketone (not shown) resulting from hydrolysis of the enaminone group of **3j** would explain formation of pyranone **15**.

In another case, we isolated 9% of such a 1,3- Scheme 4. Competing Pyridone and Pyranone diketone in the form of enol 8, after chromatography of Formations

crude enaminone [3c] (Scheme 3). Enol 8, tentatively identified by ¹H NMR spectroscopy, spontaneously cyclized in CDCl3 to pyranone 9. The chromatography furnished none of [3c] itself, suggesting that this enaminone hydrolyzed on silica gel. Pyranone 9 could also be isolated by chromatography of a crude sample of enaminone [3c].

Optimization

In the first attempt to acylate an enamine during this work, we heated a chloroform solution of acid chloride 1a, 1-(1-pyrrolidinyl)-cyclohexene, and triethylamine. This produced not the desired enaminone, which would have led to pyridone 4k, but a tar perhaps an unsurprising result in light of the thermal rearrangement that the analogous enaminone [3c] suffered. Indeed, lowering the acylation temperature was crucial to success. Acylation of the morpholine enamine of cyclohexanone at -78° , work-up with ice water, and treatment of crude enaminone [3c] with 3chloroaniline in hot benzene containing anhydrous toluenesulfonic acid raised the overall yield of 4k to 45%.

We examined related starting materials for further yield increases, but with little success. Thus, treatments of pyranone 9 (Scheme 3) with 3-chloroaniline caused no change (TLC), despite high temperatures ($\geq 100^\circ$), long times (12–18 h) and, in one experiment, the presence of toluenesulfonic acid. This acid was to catalyze the desired conversion of pyranone 9 and 3-chloroaniline to pyridone 4k.

Making pyridone 4k from enol ester 12 and 3-chloroaniline was feasible. This route, however, was no higher yielding than that in which [3c] and the aniline gave the same product. Thus, treatment of 12 with excess 3-chloroaniline afforded 42% of pyridone 4k at most.

CONCLUSION

In summary, a variety of amines transaminated enaminones 3a-d and 3j, which were made by enamine Cacylations with acid chlorides 1. The transaminations formed certain intermediate enaminones, for examples 3ei, and the intermediates cyclized to fused, polycyclic pyridones 4a-l. Enaminones 3a, [3c] and 3j rearranged thermally to the structurally related pyridones 5, 10, and 14. Efforts to increase the yield of pyridone 4k by the present route were unavailing. However, a high-yielding synthesis of 4k resulted when the ambident 2-(3chlorophenylamino)-3-pyridinecarbonyl chloride replaced chloride 1a in an enamine acylation.⁸

EXPERIMENTAL^{9,10}

(2-Chloro-3-pyridinyl)[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl]methanone (3a)

2-Chloro-3-pyridinecarbonyl chloride (1a) (16.5 g, 93.7 mmol) in CHCl₃ (90 mL, EtOH-free) was added over 20 min to an ice-cooled solution of distilled 1-(1-pyrrolidinyl)-cyclopentene 2a (13.8 mL, 93.4 mmol) and NEt₃ (13.9 mL, 100 mmol) in CHCl₃ (90 mL). When addition was complete, the reaction mixture was allowed to stir 1 h at ice-bath temperature and 20 h at 25 °C. The dark solution was washed with H₂O, 1 M NaHCO₃, and H₂O, and the solution was dried, filtered, and concentrated. The solid residue (23.95 g) crystallized from EtOAc to give 3a (21.05 g in three crops, 81%), mp 102.5-104.0 °C; IR 1600, 1570; UV 269 (3.70), 356 (3.28); ¹H NMR 8.32 (dd, J (6-4) = 1.7, J (6-5) = 5.0, H (6)), 7.66 (dd, J (4-6) = 1.7, J (4-5) = 8, H (4)), 7.21 (dd, J (5-6) = 5.0, J (5-4) = 8, H (5)), 3.54 (br m, 2 -CH₂N), 2.67 (t, J = 7.5, -CH₂C=C-), 2.44 (t, J = 7.5, -CH₂C=C-), 2.20-1.56 (m, -CH₂CH₂- and -CH₂-); MS 278 (5, *M*⁺ for ³⁷Cl), 276 (13, *M*⁺ for ³⁵Cl), 241 (100, [*M* - Cl]⁺), 213 (33), 142 (5, [C₆H₃³⁷CINO]⁺, 140 (12, [C₆H₃³⁵CINO]⁺, 114 (4, [C₅H₃³⁷Cl]⁺), 112 (10, [C₅H₃³⁵Cl]⁺.

On a larger scale, 2-chloro-3-pyridinecarbonyl chloride (2.26 kg) acylated 2a to give 2.53 kg (69%) of 3a.

(3-Chloro-2-pyrazinyl)[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl]methanone (3b)

2-Chloro-3-pyrazinecarbonyl chloride (1b) (5.00g, 28.4 mmol) in CH₂Cl₂ (25 mL) was added over 45 min to a dry ice-cooled solution of NEt₃ (3.96 mL, 28.4 mmol) and distilled 2a (3.89 g, 28.4 mmol) in CH₂Cl₂ (25 mL), under N₂. The internal temperature rose to - 40 °C and the solution became dark. It was allowed to stir 1 h at -30 °C after completion of the addition. The solution was then washed with H₂O, and the dried, filtered solution was concentrated. Chromatography (silica gel, CHCl₃-EtOAc (3:1)) followed by crystallization from Et₂O then gave 3b (4.95 g, 63%), mp 109-112 °C; IR 1610, 1500; ¹H NMR 8.48 (d, J (6-5) = 3, H (6)), 8.32 (d, J (5-6) = 3, H (5)), 3.58 (m, 2 - CH₂N), 2.68 (t, J = 7.5, -CH₂C=C-), 2.43 (t, J = 7.5, -CH₂C=C-), 2.10-1.63 (br m, -CH₂CH₂- and -CH₂-); MS 279 (11, *M*⁺ for ³⁷Cl), 277 (32, *M*⁺ for ³⁵Cl), 242 (100, [*M* - Cl]⁺), 164 (71, [C₁₀H₁₄NO]⁺), 136 (50, [C₉H₁₄N]⁺).

(2-Chloro-3-pyridinyl)[2-(4-morpholinyl)-1-cyclohexen-1-yl]methanone (3c)

A solution of 2-chloro-3-pyridinecarbonyl chloride (1a) (114.6 g, 0.651 mol) in CH_2Cl_2 (600 mL) was added over 30 min to a mechanically stirred, cooled (dry ice-acetone) solution of 1-(4-morpholinyl)-cyclohexene (2b) (101.0 g, 0.604 mol), NEt₃ (83 mL, 0.595 mol), and CH_2Cl_2 (600 mL) in an atmosphere of Ar. The reaction mixture was stirred in the dry ice-acetone bath for 1.25 h, and was then stirred in a bath of ice and acetone for an additional 1 h. The resulting solution was washed with ice water, 1M NaHCO₃, and ice water. The solution was dried, filtered, and concentrated; the temperature during concentration was kept at ~ 15 °C. Crude, oily enaminone 3c (225 g; IR 1760 (CO of impurity), 1700 (CO of impurity), 1640 (enaminone CO), 1580) was not purified or further characterized, but was used directly in the next step.

Silica gel chromatography of crude 3c hydrolyzed it to (2-chloro-3-pyridinyl)(2-hydroxy-1-cyclohexene-1-yl)methanone (8), which cyclized upon standing to 6,7,8,9-tetrahydro-5H-1-benzopyrano[2,3-b]pyridin-5one (9). The chromatography also separated 2-[(2-chloro-3-pyridinyl)carbonyl]-1-cyclohexen-1-yl 2-chloro-3pyridinecarboxylate (12).

(2-Chloro-3-pyridinyl)[5-methyl-2-(1-pyrrolidinyl)-1-cyclohexen-1-yl]-methanone (3d)

2-Chloro-3-pyridinecarbonyl chloride (1a) (15.9 g, 90 mmol) in CH_2Cl_2 (70 mL) was added over 45 min to a dry-ice cooled solution of 4-methyl-1-(1-pyrrolidinyl)-cyclohexene (2c) (14.9 g, 90 mmol) and NEt₃ in CH_2Cl_2 (70 mL) under N₂. The internal temperature was - 40 °C when addition was complete. The reaction mixture was stirred 1 h at - 30 °C, and was then washed with H₂O. The dried, filtered organic solution was concentrated at ~ 5 °C to give 3d (27.5 g). Crude, oily 3d was not characterized or purified, but was used directly in the next step.

(2-Chloro-3-pyridinyl)[2-[(3-chlorophenyl)amino]-1-cyclohexen-1-yl]methanone (3e)

A solution of crude enaminone 3c (prepared from 28.4 mmol of 2-chloro-3-pyridinecarbonyl chloride (1a) as the limiting reagent) in $3-\text{Cl-C}_6H_4\text{NH}_2$ (5 mL, 47.3 mmol, 1.7 eq) under N₂ was heated 24 h in a 65° oil bath. The cooled mixture was diluted with CHCl₃, and the resulting solution was washed with 1N HCl and with H₂O. The dried organic solution was filtered and concentrated to give crude 3e (8.45 g) as a light brown oil. Chromatography over silica gel (60-200 mesh) and elution with CHCl₃ then gave 3e (4.19 g, 42% from the acid chloride, pure according to TLC) as a viscous yellow oil; IR 1640 (CO), 1585; ¹H NMR 13.3 (br s, 1H, ex., NH), 8.36 (dd, H (6)), 7.56 (dd, H (4)) and 7.44-6.94 (Ar, H (5)) (total of 5H), 2.48 (br m, -CH₂-), 2.12 (br m, -CH₂-), 1.63 (br m, 2 -CH₂-); MS 350 (7, *M*⁺ for ³⁷Cl₂), 349 (10), 348 (41, *M*⁺ for ³⁷Cl³⁵Cl), 347 (28), 346 (64, *M*⁺ for ³⁵Cl₂), 345 (24), 314 (22), 313 (92, [C₁₈H₁₆³⁷ClN₂O]⁺), 312 (76, [C₁₈H₁₅³⁷ClN₂O]⁺), 311 (100, [C₁₈H₁₆³⁵ClN₂O]⁺, 310 (14, [C₁₈H₁₅³⁵ClN₂O]⁺), 309 (28), 142 (10, [C₆H₃³⁷ClNO]⁺, 140 (26, [C₆H₃³⁵ClNO]⁺, 114 (6, [C₅H₃³⁷ClN]⁺), 112 (17, [C₅H₃³⁵ClN]⁺).

Enaminone 3e was not further purified or characterized, but was used directly in the next step.

(2-Chloro-3-pyridinyl)[2-[(2-ethoxy-2-oxoethyl)amino]-1-cyclopenten-1-yl]methanone (3f)

EtO₂CCH₂NH₂·HCl (3.08 g, 22 mmol), enaminone **3a** (6.10 g, 22 mmol), NEt₃ (2.26 g, 22 mmol), and dry *t*-BuOH (170 mL) were refluxed under N₂ for 34 h. The solvent was evaporated and the residue shaken with CHCl₃ and H₂O. Combined extracts were separated, washed with H₂O and brine, dried, filtered, and concentrated. The resulting brown oil crystallized from 2-Pr₂O and was recrystallized from 2-PrOH providing **3f** (2.75 g, 41%) as a tan solid, mp 114.5-117.5 °C; IR (KBr) 3260 (NH), 1750 (ester), 1625 (C=O); ¹H NMR (79.5 MHz) 10.01 (br t, NH), 8.37 (dd, *J* (6'-5') = 5, *J* (6'-4') = 2, *H* (6')), 7.59 (dd, *J* (4'-5') = 7, *J* (4'-6') = 2, *H* (4')), 7.25 (dd, *J* (5'-4') = 7, *J* (5'-6') = 5, *H* (5')), 4.25 and 4.08 (overlapping q and d, respectively, *J* (-OCH₂-CH₃) = 7, *J* (CH₂-NH) = 7, total of 4 H, -OCH₂- and NCH₂CO-)s, 2.67 and 2.46 (overlapping t, *J* (3-4) = 7, *J* (5-4) = 7, total of 4H, *H* (3) and *H* (5)), 1.92 (m, *J* (4-3) = 7, *J* (4-5) = 7, 2H, *H* (4)), 1.39 (t, *J* (CH₃-CH₂-) = 7, CH₃; ¹³C NMR (200 MHz) 186 (C=O), 170 (O-C=O), 169 (C (2')*), 149 (C (6')), 146 (C (1')), 138 (C (3')), 136 (C (4')), 122 (C (5')), 106 (C (2)), 62 (CH₂)), 46 (NCH₂CO), 32 (C (3)**), 30 (C (5)**), 20 (C (4)), 14 (CH₃); MS 310 (8, *M*⁺ for ³⁷Cl), 308 (24, *M*⁺ for ³⁵Cl), 274 (14), 273 (80, [*M* - Cl]⁺), 272 (7, [*M* - HCl]⁺), 199 (100, [C₁₂H₁₁N₂]⁺), 142 (4, [C₆H₃³⁷ClNO]⁺, 140 (11, [C₆H₃³⁵ClNO]⁺, 114 (3, [C₅H₃³⁷ClN]⁺).

(2-Chloro-3-pyridinyl)[2-(cyclohexylamino)-1-cyclopenten-1-yl]methanone (3g)

A mixture of **3a** (13.8 g, 50.0 mmol) and cyclohexyl amine (4.96 g, 50.0 mmol) was heated 24 h at 125 °C, cooled, and chromatographed over silica gel. Elution (MeOH-CHCl₃, 2.5 : 97.5) and crystallization (EtOAc) gave **3g** (1.90 g, 12%), mp 142-143.5 °C; IR 1610; ¹H NMR 10.4-9.97 (br d, J (NH-CH) = 6, NH), 8.38 (dd, J (6-5) = 5, J (6-4) = 2, H (6)), 7.61 (dd, J (4-5) = 7, J (4-6) = 2, H (4)), 7.25 (dd, J (4-5) = 7, J (6-5) = 6, NH) (6-5) = 7, J (7) = 7, J (7) = 7, J (7) = 7, J

5, *H* (5)), 3.57-3.00 (br m, 1H, CH), 2.67 (t, J = 7, 2H, -CH₂C=C-), 2.37 (t, J = 7, 2H, -CH₂C=C-), 2.17-0.83 (br m, 12H, -CH₂- and -(CH₂)₅-); MS 306 (25, *M*⁺ for ³⁷Cl), 304 (73, *M*⁺ for ³⁵Cl), 269 (100, [*M* - Cl]⁺), 225 (15), 224 (7), 223 (36), 222 (15), 221 (59), 187 (53, [C₁₁H₁₁N₂O]⁺), 142 (14, [C₆H₃³⁷ClNO]⁺, 140 (41, [C₆H₃³⁵ClNO]⁺, 114 (5, [C₅H₃³⁷Cl]⁺), and 112 (13, [C₅H₃³⁵ClNO]⁺).

(3-Chloro-2-pyrazinyl)[2-[(3-nitrophenyl)amino]-1-cyclopenten-1-yl]methanone (3h)

Chromatography (silica gel, CHCl₃) of the residue from crystallization of **4i** (*read on*) separated **3h** (0.82 g, 15% from **3b**), mp 129-130 °C after crystallization from CHCl₃-pet. eth.; IR 3480, 3380, 1620, 1520, 1360; ¹H NMR 12.1 (br s, ex., NH), 8.58 (d, J (6-5) = 2.1, H (6)), 8.44 (d, J (5-6) = 2.1, H (5)), 8.17-7.19 (br m, 2H, Ar), 7.6-7.47 (br m, 2H, Ar), 3.01 (t, J = 7.5, -CH₂C=C-), 2.57 (t, J = 7.5, -CH₂C=C-), 2.04 (br q, -CH₂-); MS 346 (11, M^+ for ³⁷Cl), 344 (31, M^+ for ³⁵Cl), 309 (49, $[M - Cl]^+$), 308 (100, $[M - HCl]^+$), 307 (66), 231 (12, $[C_{12}H_{11}N_{2}O_{3}]^+$), 203 (12 $[C_{11}H_{11}N_{2}O_{2}]^+$), 202 (39), 186 (11), 185 (41), 184 (51), 143 (11, $[C_{5}H_{2}^{37}CIN_{2}O]^+$, 141 (35, $[C_{5}H_{2}^{35}CIN_{2}O]^+$, 115 (26, $[C_{4}H_{2}^{37}CIN_{2}]^+$), 113 (39, $[C_{4}H_{2}^{35}CIN_{2}]^+$).

(3-Chloro-2-pyrazinyl)[2-(phenylamino)-1-cyclopenten-1-yl]methanone (3i)

In addition to **4h**, chromatography (*read on*) also separated **3i** (2.38 g, 53% from **3b**), mp 100-101 °C after crystallization from CHCl₃-pet. eth; IR 3020, 2950, 2850, 1610, 1540; ¹H NMR 8.52 (d, J (6 - 5) = 2, H (6)), 8.29 (d, J (5-6) = 2, H (5)), 7.78-7.00 (m, 5H, Ar), 2.88 (t, J = 7.5, $-CH_2C=C-$), 2.51 (t, J = 7.5, $-CH_2C=C-$), 1.91 (m, $-CH_2-$); MS 301 (21, M^+ for ³⁷Cl), 299 (62, M^+ for ³⁵Cl), 265 (17), 264 (100, [M - Cl]⁺), 263 (95, [M - HCl]⁺), 262 (88), 187 (11), 186 (78, [$C_{12}H_{12}NO$]⁺), 184 (23), 158 (20, [$C_{11}H_{12}N$]⁺), 157 (40), 156 (19), 143 (8, [$C_{5}H_2^{37}ClN_2O$]⁺, 141 (4, [$C_{5}H_2^{35}ClN_2O$]⁺, 115 (6, [$C_{4}H_2^{37}ClN_2$]⁺), 113 (8, [$C_{4}H_2^{35}ClN_2$]⁺).

(2-Chloro-3-pyridinyl)[3,4-dihydro-2-(1-pyrrolidinyl)-1-naphthalenyl]methanone (3j)

2-Chloro-3-pyridinecarbonyl chloride (17.6 g, 100 mmol) in CH₂Cl₂ (120 mL) was added over 80 min to an ice-cooled solution of 1-(3,4-dihydro-2-naphthyl)-pyrrolidine (2d) (19.9 g, 100 mmol), NEt₃ (14.0 mL,100 mmol) and CH₂Cl₂ (100 mL). The internal temperature of the reaction mixture was kept between 0 and 4 °C during addition and for 2 h thereafter. Solvent was evaporated from the washed (H₂O), dried, and filtered solution that resulted; the residual oil crystallized from Et₂O to give 3j (21.2 g, 63%, pure by TLC). Two crystallizations from EtOAc gave an analytical sample, mp 168-172 °C; IR (KBr) 1590, 1570; ¹H NMR (79.5 MHz) 8.23 (dd, J (6-4) = 2, J (6-5) = 5, H (6)), 7.27 (dd, J (4-6) = 2, J (4-5) = 7, H (4)), 7.19-6.39 (complex m, 5H, Ar and H (5)), 3.61 (br m, -CH₂NCH₂-), 2.80 (s, -CH₂CH₂-), 2.06 (br m, -(CH₂)₂CH₂N-); MS 340 (22, *M*⁺ for ³⁷Cl), 338 (66, *M*⁺ for ³⁵Cl), 323 (36, [*M* - OH]⁺), 321 (100, [*M* - OH]⁺), 303 (15, [*M* - Cl]⁺), 198 (59, [*M* - C₆H₃CINO]⁺), 142 (3, [C₆H₃³⁷CINO]⁺, 140 (7, [C₆H₃³⁵CINO]⁺, 114 (3, [C₅H₃³⁷CIN]⁺), 112 (7, [C₅H₃³⁵CIN]⁺).

Pyridones 4	Table 2. Microanalytical Data for Enaminones 3a-3b, and 3f-3j										
Method A. In the	<u></u>		Calcd.				Found				
heating enaminone 3a	No:	Formula	С	Н	Cl	N	с	н	Cl	N	
under N_2 with 1.25 eq of the corresponding amines gave 4a-4c , 4f - 4g , and 4p . A larger	3a 3b 3f 3g	C ₁₅ H ₁₇ ClN ₂ O C ₁₄ H ₁₆ ClN ₃ O C ₁₅ H ₁₇ ClN ₂ O ₃ C ₁₇ H ₂₁ ClN ₂ O	65.09 60.54 58.34 66.98	6.19 5.81 5.55 6.94	12.81 12.76 11.48 11.63	10.12 15.13 9.07 9.19	65.04 60.48 58.37 67.16	6.03 5.83 5.69 6.97	12.85 12.82 11.32 11.58	10.06 14.92 9.06 9.32	
excess of hydrazine hy- drate converted 3a to 4q . The specific amines	3h 3i 3j	C ₁₆ H ₁₃ CIN4O ₃ C ₁₆ H ₁₄ CIN3O C ₂₀ H ₁₉ CIN ₂ O	55.74 64.10 70.89	3.80 4.70 5.64	10.28 11.83 10.46	16.25 14.02 8.27	55.75 63.91 70.48	3.48 4.75 5.73	10.63 12.02 10.51	16.34 13.82 8.06	

as well as reaction times and temperatures used to make individual pyridones are stated separately. Cooled reaction mixtures were partitioned between CHCl₃ and H₂O, and organic extracts were washed with dilute aqueous NaHCO₃ (or Na₂CO₃) and with H₂O. Dried extracts were filtered and concentrated; crystallization, or chromatography followed by crystallization as noted, purified the products. Unless otherwise specified, the solvent for crystallization was MeCN.

Method B: from Enaminones 3a-3c. Water was azeotropically distilled from a suspension of p-TsOH H₂O in C₆H₆, and the resulting solution was cooled. An equimolar amount of the enaminone and a 10-25% molar excess of the aniline (where appropriate) were added, and the resulting mixture was refluxed under a Dean-Stark trap in an atmosphere of N₂. The cooled mixture was concentrated, and the residue was diluted with CHCl₃ (or CH₂Cl₂) and washed with H₂O, 1 M NaHCO₃ (or Na₂CO₃), and with H₂O. (Washing with aqueous base removed the p-TsOH salts of the anilines, which otherwise crystallized from the reaction mixtures.) The dried organic layer was filtered and concentrated; crystallization, or chromatography followed by crystallization as noted below, then gave pyridones **4e**, **4h**, and **4m**. Unless otherwise specified, the solvent for crystallization was again MeCN. Specific amines, solvent volumes, and reaction times are stated separately.

Infrared and ¹H NMR Spectrometry. The common carbonyl groups of pyridones 4 absorbed at 1610-1640 cm⁻¹ irrespective of medium (CH₂Cl₂ solution or KBr disc). In CDCl₃ solution, the γ -proton resonances of pyridine-fused pyridones 4 were deshielded from that of pyridine by $\Delta \delta = +1.13 \pm 0.04$ for 35 examples. These deshieldings, due to carbonyl anisotropy, established that the desired cyclizations had occurred.

6,7,8,9-Tetrahydro-9-phenyl-5H-cyclopenta[b][1,8]naphthyridin-5-one (4a)

Heating enaminone **3a** (58.5 mmol) and aniline (73 mmol) for 51 h at 110 °C and 24 h at 125 °C, followed by working-up and crystallizing gave **4a**, mp 235-237 °C; UV 250 (4.48), 336 (4.11); ¹H NMR (79.5 MHz) 8.76 (dd, J (3-4) = 7, J (2-4) = 2, H (4)), 8.54 (dd, J (2-3) = 5, J (2-4) = 2, H (2)), 7.74-7.43 (m, 3H, Ar), 7.43-7.12 (m, 3H, Ar and H (3)), 3.00 (t, J (6-7) = 7, 2 H (6)), 2.68 (t, J (7-8) = 7, 2 H (8)), 2.08 (m, J (6-7) = J (7-8) = 7, 2 H (7)); ¹³C NMR (100 MHz, Me₂SO-d₆) 174 (C (5)), 156 (C (9a)), 151 (C (2) and C (8a)), 139 (C (1')), 135 (C (4)), 130 (Ar), 129 (Ar), 128 (Ar), 121 (C (5a)), 120 (C (4a)), 119 (C (3)), 34 (C (6)^{*}), 28 (C (8)^{*}), 21 (C (7)); MS 262 (98, M⁺), 261 (100, [M -1]⁺).

On a larger scale, enaminone 3a (2.00 kg) and aniline yielded 1.16 kg (63%) of 4a after two crystallizations.

6,7,8,9-Tetrahydro-9-(3-methoxyphenyl)-5H-cyclopenta[b][1,8]naphthyridin-5-one (4b)

Heating 3a (18.1 mmol) and 3-MeOC₆H₄NH₂ (22.6 mmol) for 48 h at 130 °C, followed by working-up and crystallizing gave 4b, mp 259.5-261.0 °C; ¹H NMR (79.5 MHz) 3.85 (s, -OCH₃); MS 292 (96, M^+), 291 (100, $[M - 1]^+$).

9-(3-Chlorophenyl)-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin-5-one (4c)

Heating 3a (18.1 mmol) and 3-ClC₆H₄NH₂ (22.6 mmol) for 66 h at 130°, followed by working-up and crystallizing gave 4c, mp 261-264 °C; MS 296 (97, M^+), 295 (100, $[M - 1]^+$).

6,7,8,9-Tetrahydro-9-(4-methoxyphenyl)-SH-cyclopenta[b][1,8]naphthyridin-5-one (4d)

Enaminone 3a (50 mmol), 4-MeOC₆H₄NH₂ (55 mmol), anhydrous *p*-TsOH (50 mmol), and C₆H₆ (265 mL) were refluxed 28 h. Work-up and crystallization gave 4d, mp 212-215 °C;¹H NMR (79.5 MHz) 3.90 (s, -OCH₃); MS 292 (99, M^+), 291 (100, [M - 1]⁺).

6,7,8,9-Tetrahydro-9-(4-methylphenyl)-5H-cyclopenta[b][1,8]naphthyridin-5-one (4e)

Enaminone 3a (75 mmol), 4-MeC₆H₄NH₂ (82.5 mmol), anhydrous *p*-TsOH (75 mmol), and C₆H₆ (380 mL) were refluxed 29h. Work-up and crystallization gave 4e, mp 242-242.5 °C; ¹H NMR (79.5 MHz) 2.49 (s, -CH₃); MS 276 (99, M^+), 275 (100, $[M - 1]^+$).

9-(3,4-Dichlorophenyl)-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin-5-one (4f)

Heating 3a (18.0 mmol) and 3,4-Cl₂C₆H₃NH₂ (22.6 mmol) for 24 h at 135 °C, followed by working-up and crystallizing, gave 4f, mp 294-296 °C; MS 334 (9, M^+ for ³⁷Cl₂), 332 (56, M^+ for ³⁷Cl³⁵Cl), 330 (87, M^+ for ³⁵Cl₂), 329 (100, [M - 1]⁺).

6,7,8,9-Tetrahydro-9-(3-pyridinyl)-5H-cyclopenta[b][1,8]naphthyridin-5-one (4g)

Heating 3a (18.1 mmol) and $3-H_2N-C_5H_4N$ (22.6 mmol) for 110 h at 130 °C, followed by working-up, chromatographing (silica gel, CHCl₃-MeOH-conc. aq. NH₃ (99 : 0.9 : 0.1 by vol.), and crystallizing from EtOAc gave 4g, mp 241.0-243.5 °C; ¹H NMR 8.8-8.35 (complex m, H (2), H (4), H (2'), and H (6')), 7.8-7.1 (complex m, H (3), H (4') and H (5')); MS 263 (99, M⁺), 262 (100, [M - 1]⁺).

5,6,7,8-Tetrahydro-5-phenyl-9H-cyclopenta[5,6]pyrido[2,3-b]pyrazin-9-one (4h)

Enaminone **3b** (15 mmol), PhNH₂ (18.7 mmol), anhydrous *p*-TsOH (15 mmol), and C_6H_6 (60 mL) were refluxed 23 h. Work-up, chromatography under N₂ pressure (silica gel, CHCl₃), and crystallization from CHCl₃-pet. eth. then gave **4h**, mp — (d. from 300 °C);¹H NMR 8.74 (d, *J* (2-3) = 3, *H* (2)), 8.48 (d, *J* (3-2) = 3, *H* (3)), 7.63-7.52 (m, 2H, Ar), 7.35-7.22 (m, 3H, Ar), 3.04 (t, *J* (8-7) = 7, 2 *H* (8)), 2.73 (t, *J* (6-7) = 7, 2 *H* (6)), 1.91-1.24 (m, *J* (7-6) = *J* (7-8) = 7, 2 *H* (7)); MS 297 (100, *M*⁺).

5,6,7,8-Tetrahydro-5-(3-nitrophenyl)-9H-cyclopenta[5,6]pyrido[2,3-b]pyrazin-9-one (4i)

Enaminone **3b** (15 mmol), $3-O_2NC_6H_4NH_2$ (18.7 mmol), anhydrous *p*-TsOH (15 mmol), and C_6H_6 (60 mL) were refluxed 22 h. Work-up and crystallization from CHCl₃-pet. eth. gave **4i**, mp — (d. from 300 °C); IR (mineral oil) 1525 and 1340 (-NO₂); MS 297 (75, *M*⁺), 296 (100, [*M* - 1]⁺).

6,8,9,10-Tetrahydro-10-phenyl-benzo[b][1,8]naphthyridin-5(7H)-one (4j)

Enaminone 3c (100 mmol), PhNH₂ (125 mmol), anhydrous *p*-TsOH (100 mmol), and C₆H₆ (150 mL) were refluxed 36 h. Work-up and crystallization gave 4j, mp 256.5-260.0 °C; ¹H NMR 8.40 (dd, *J* (2-3) = 4, *J* (2-4) = 1, *H* (2)), 8.28 (dd, *J* (2-4) = 1, *J* (3-4) = 2.2, *H* (4)), 7.7-7.4 (m, 3H, *Ar*), 7.35-7.1 (m, 3H, *Ar* plus *H* (3)), 2.75 (br m, -CH₂-), 2.55 (br m, -CH₂-), 1.8-1.55 (br m, -(CH₂)₂-); MS 276 (100, *M*⁺).

10-(3-Chlorophenyl)-6,8,9,10-tetrahydrobenzo[b][1,8]naphthyridin-5(7H)-one (4k)

From Enaminone 3c. 3-Chloroaniline (68.8 mL, 0.650 mol; Aldrich, as supplied) was added to a solution of anhydrous p-TsOH (prepared by azeotropic distillation of water from 114 g (0.599 mol) of the monohydrate) in $C_{c}H_{c}$ (700 mL), giving a precipitate. To the resulting suspension, a solution of crude enaminone 3c (225 g) in C_6H_6 (400 mL) was added. The mixture was then refluxed overnight under a Dean-Stark trap in an atmosphere of N₂. Solvent was distilled at atmospheric pressure, and a solution of the residue in CHCl₃ (1 L) was washed with 1-L portions of H₂O, 2N HCl, H₂O, 1M NaHCO₃, and H₂O. The organic solution was dried, filtered, and concentrated, and the oily residue was dissolved in Et₂O (700 mL) for crystallization. The collected, washed (700mL of Et₂O) solid was then recrystallized from MeCN (1.2 L) with the aid of a Soxhlet extractor. The hot suspension was cooled, and the solid was collected, washed with MeCN (80 mL), and dried to give analytically pure 4k (84.6 g, 45.4% from the acid chloride 1a) in two crops of 74.8 and 9.8 g), mp 199-201 °C, identified by comparison of mp, and ¹H NMR and mass spectra with those of an authentic sample; ¹H NMR (79.5 MHz) 8.68 (dd, J(2-4) = 2, J(3-4) = 8, H(4)), 8.46 (dd, J(2-4) = 2, J(2-3) = 5, H(2)), 7.55-7.35 (m, 2H, Ar), 7.30-7.02 (m, 3H, Ar), 2.85-2.51 (br m, $W_{h/2} = 12$ Hz, 2H (6)), 2.42-2.04 (br m, $W_{h/2} = 12$, 2H (9)), 1.89-1.53 (br m, W_{h/2} = 9, 2H (7) and 2 H (8)); ¹³ C NMR (400 MHz) 177 (br m (collapsed to a t on irradiation of H (4), C (5)), 152 (C (2)), 151 (C (10a)*), 149 (C (9a)*), 140 (C (1')), 135.3 (C (4)), 135.1 (C (3')), 131 (C (2')=), 130 (C (4')=), 129 (C (5')=), 128 (C (6')=), 120 (C (4a)[†]), 119 (C (3)), 118 (C (5a)[†]). 30 (C (6)^{††}), 22 (C (7) and C (8)), 21 (C (9)^{††}); MS 312 (36, M⁺ for ³⁷Cl), 310 (100, M⁺ for ³⁵Cl).

From Enaminone 3e. p-TsOH·H₂O (56 mg, 0.294 mmol) and enaminone 3e (530 mg, 1.53 mmol) in toluene (25 mL) were refluxed 9 h, and solvent was evaporated from the cooled reaction mixture. A solution of the residue in CHCl₃ was washed (1 M NaHCO₃, H₂O), dried, filtered, and concentrated. The solid residue (450 mg) was crystallized (MeCN) to give 4k (244 mg, 51%), mp 199.5- 202.5 °C, identified by side-by-side and co-spotted TLC with an authentic sample, and by an undepressed mmp with an authentic sample.

From Enol Ester (12). 3-Chloroaniline (663 mg, 5.20 mmol; Aldrich, as supplied) was added to a solution of anhydrous p-TsOH [prepared by azeotropic distillation of water from 1.17 g (6.14 mmol) of the monohydrate] in toluene (20 mL), giving a precipitate. To this was added enol ester 12 (1.91 g, 5.07 mmol) in toluene (10 mL), after which the reaction mixture was refluxed for 23 h. CH₂Cl₂ was added and the organic layer was washed successively with saturated NaHCO₃ and saturated salt solutions, and was dried and concencentrated. Gradient chromatography over silica gel under N₂ pressure with an eluent of 50-75% EtOAc in hexanes afforded 4k (431 mg, 27%) and 9 (538 mg, 53%).

A series of experiments was carried out using acidic (*p*-TsOH) or basic (NEt₃, K₂CO₃ or *n*-BuLi) conditions. We varied the ratio of 3-chloroaniline to substrate from one to three equivalents, and used toluene, CH₃CN, THF, or DMF as a solvent. The reaction temperatures ranged from 0 °C to reflux. In general, the reactions were monitored by a combination of TLC and capillary GC (Supelco SPB-5 column, 30 meters x 0.25 mm d_f; flow rate = 2 mL per minute, helium; split ratio 50:1; injector and detector temperature = 250 °C; method: isothermal, 250 °C, 15 minutes. Under these conditions the retention times were the following: pyranone 9, 2.47 min; enol ester 12,12.06 min; pyridone 4k, 13.60 min; and rearranged pyridone 10, 11.72 min. The maximum amount of 4k observed was 42%, with pyranone 9 as the major by-product (in some reactions only 9 was observed).

From Enamine [13]. In several reactions intermediate enamine [13], prepared by treating 1-(4-morpholinyl)cyclohexene with 2 equivalents of 2-chloro-3-pyridinecarbonyl chloride (CH_2Cl_2 , RT, 2-4 days), but not isolated, was used as formed. It was treated with 3-chloroaniline to yield pyridone **4k** (24-36%); pyranone **9** and the pyridone **10** were also observed.

6,8,9,10-Tetrahydro-7-methyl-10-phenyl-benzo[b][1,8]naphthyridin-5(10H)-one (41)

Enaminone 3d (30 mmol), PhNH₂ (38 mmol), anhydrous *p*-TsOH (30 mmol), and C₆H₆ (180 mL) were refluxed 25 h. Work-up and crystallization from CHCl₃-Me₂CO gave 4l, mp 221-223 °C; ¹H NMR 1.09 (d, $J = 7, -CH_3$); MS 290 (83, M^+), 275 (100).

5,6-Dihydro-7-phenyl-naphtho[2,1-b][1,8]naphthyridin-12(7H)-one (4m)

Enaminone 3j (10 mmol), PhNH₂ (12.5 mmol), anhydrous *p*-TsOH (10 mmol), and C₆H₆ (55 mL) were refluxed 24 h. Work-up, chromatography (silica gel, CHCl₃-EtOH (99.6 : 0.4 by vol.)), and crystallization from dioxane gave 4m (7%), mp 265-267 °C; ¹H NMR (79.5 MHz) 8.93 (dd, J(1-2) = 7, J(1-3) = 2, H(1)), 3.06-2.31 (m, 2 H (5) and 2 H (6)); MS 324 (100, M^+).

Ethyl 6,7,8,9-	Table 3. Microanalytical Data for Pyridones 4a-4q										
Tetrahydro-5- oxo-5H-cy-			Calcd.				Found				
clopenta[b][1,8]	No.	Formula	С	Н	Cl	N	С	Н	Cl	N	
naphthyridine-9-	4a	C ₁₇ H ₁₄ N ₂ O	77.84	5.38		10.68	78.01	5.50	<u> </u>	10.80	
	4b	CieHieN2O2	73.95	5.52		9.58	73.91	5.67	—	9.60	
Enaminone	4c	Cu ₇ H ₁₂ ClN ₂ O	68.80	4.42	11.95	9.44	68.60	4.31	11.88	9.21	
3f (3.09 g, 10.0	4d	C19H16N2O2	73.95	5.52		9.58	74.05	5.45	_	9.63	
mmol), p-TsOH	4e	C18H16N2O	78.24	5.84		10.14	78.38	5.76		10.24	
monohydrate	4f	C17H12CI2N2O	61.65	3.65	21.41	8.45	61.95	3.54	21.18	8.57	
(1.90 g. 10.0	4g	C ₁₆ H ₁₃ N ₃ O	72.99	4.98		15.96	72.76	4.93		15.87	
mmol) and	4h	C ₁₆ H ₁₃ N ₃ O	72.99	4.98	—	15.96	73.21	5.39		16.12	
(55 m)	4i	$C_{16}H_{12}N_{4}O_{3}$	62.33	3.92		18.17	62.35	3.75	_	18.18	
C_6H_6 (55 mL)	4j	C18H16N2O	78.24	5.84		10.14	78.66	5.90		10.16	
were refluxed 3	4k	C18H15CIN2O	69.56	4.86	11.40	9.00	69.54	4.80	11.20	9.00	
h under a Dean-	41	C19H18N2O	78.59	6.25		9.65	78.36	6.24	—	9.65	
Stark trap. The	4m	C ₂₂ H ₁₆ N ₂ O	81.46	4.97		8.64	81.28	4.94	_	8.51	
C ₆ H ₆ was evan-	4n	$C_{15}H_{16}N_2O_3$	66.16	5.92		10.29	65.97	5.85		10.18	
orated and the	40	C17H20N2O	76.08	7.51		10.44	76.20	7.58		10.48	
maidua dissoluad	4p	$C_{18}H_{15}FN_2O^a$	73.45	5.14	_	9.52	73.76	5.24	_	9.62	
	4q	C ₁₁ H ₁₁ N ₃ O	65.66	5.51		20.88	65.42	5.50		21.10	
in CHCl ₃ . The											

CHCl₃ solution ^a Calcd for F: 6.46; found: 6.62.

was washed with H_2O , 1 M Na₂CO₃, and with brine; it was dried, filtered, and concentrated to give crude 4n (2.32 g) which crystallized yielding pure 4n (1.31 g, 48%), mp 151-153.5 °C; IR (KBr) 1740 (ester CO); ¹H

NMR (79.5 MHz) 5.13 (s, NCH₂-), 4.22 (q, J = 7, -OCH₂CH₃), 1.28 (t, J = 7, -OCH₂CH₃); MS 272 (93, M^+), 199 (100).

9-Cyclohexyl-6,7,8,9-tetrahydro-5H-cyclo-penta[b][1,8]napht-hyridin-5-one (40)

Enaminone 3g (1.96 g, 6.50 mmol), p-TsOH \cdot H₂O (1.22 g, 6.40 mmol) and C₆H₆ (50mL) were refluxed 24 h under a Dean-Stark trap. The C₆H₆ was evaporated and the residue dissolved in CH₂Cl₂. The solution was washed with H₂O, dried, filtered, and concentrated to give crude 40 as a solid (1.66 g). Crystallization provided the analytical sample (1.18 g, 69%), mp 219-220 °C ;¹H NMR (200 MHz) 4.20-3.95 (br m, H (1')), 2.05-1.55 (br m, 2 H (2'), 2 H (3'), 2 H (5'), 2 H (6')), 1.50-1.20 (br m, 2 H (4')); MS 268 (M⁺), 185 (100).

9-[(4-Fluorophenyl)methyl]-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin-5-one (4p)

Heating **3a** (18.0 mmol) and 4-F-C₆H₄CH₂NH₂ (22.6 mmol) for 48 h at 125 °C, followed by working-up and crystallizing gave **4p** (51%), mp 177-178.5 °C; ¹H NMR (79.5 MHz) 5.65 (s, NCH₂-); MS 294 (96, M^+), 109 (100, [C₇H₆F]⁺).

9-Amino-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin-5-one (4q)

Refluxing **3a** (18.1 mmol) and H₂NNH₂ monohydrate (103 mmol) for 3.5 h, followed by working-up and crystallizing gave **4q** (1.45 g, 40%), mp 206-210 (d) °C; IR (KBr) $3700^{4}3000$ br (-NH₂); ¹H NMR 5.26 (s, ex, -NH₂); MS 201 (100, M⁺), 200 (78, [M - 1]⁺).

9-(4-Chlorobutyl)-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin-5-one (5)

Heating enaminone **3a** (2.00 g, 7.23 mmol) under N₂ in a 150 °C oil bath for 4 h gave **5**; conversion was complete after 1.5 h (¹H NMR), and the melt solidified on cooling. The crude product was chromatographed over silica gel (50 g), and **5** (1.916 g, contaminated with 22 mole-% 2-PrOH, 90% yield) was eluted with 2-PrOH-CH₂Cl₂ (5 : 95, by vol.). Crystallization (EtOAc) of the collected, washed, and dried product gave pure 5, mp 89.0-92.0 °C; IR (KBr) 1620 (CO); ¹H NMR 8.73 (dd, J (2-4) = 2, J (3-4) = 8, H (4)), 8.66 (dd, J (2-4) = 2, J (2-3) = 5, H (2)), 7.29 (dd, J (3-4) = 8, J (2-3) = 5, H (3)), 4.4 (br t, -CH₂Cl), 3.59 (br t, -CH₂N), 3.06 (br m, 4H₄ -C(6)H₂- and -C(8)H₂.), 2.3-1.7 (overlapping m, 6H, -(CH₂)₂- and -C(7)H₂-); MS 278 (6, M^+ for ³⁷Cl), 276 (18, M^+ for ³⁵Cl), 241 (31, $[M - Cl]^+$), 213 (11, $[M - C_2H_4Cl]^+$), 199 (41, $[M - C_3H_6Cl]^+$), 185 (28, $[M - C_4H_8Cl]^+$), 41 (100).

Anal. Calcd for C₁₅H₁₇ClN₂O: C, 65.09; H, 6.19; Cl, 12.18; N, 10.12. Found: C, 65.40; H, 6.05; Cl, 12.50; N, 10.15.

9-[4-(Phenylamino)butyl]-6,7,8,9-tetrahydro-5H-cyclopenta[b][1,8]naphthyridin5-one (6)

Chromatography (silica gel, 1% MeOH-CHCl₃) of residues from crystallization of **4a** afforded crude pyridone **6**; recrystallization (MeOH) then gave a pure (TLC) sample (906 mg, 5% from **3a** (58.5 mmol)), mp 185.0-186.0 °C; IR (KBr) 1620 (CO); ¹H NMR (Me₂SO-d₆) 8.88 (dd, J (2-4)= 2, H (2)), 8.74 (dd, J (4-3) = 8, J (4-2) = 2, H (4)), 7.71 (dd, J (3-2) = 5, J (3-4) = 8, H (3)), 7.29-7.18 (2H, Ar), 6.75-6.63 (3H, Ar), 5.7 (br t, NH, ex), 4.9 (t, $-CH_2N$ (9)), 3.27 (t, $-C(6)H_2$ - or $-C(8)H_2$ -), 3.08 (q, collapsed to a t on ex, $-CH_2NHPh$), 2.8 (t, $-C(8)H_2$ - or $-C(6)H_2$ -), 2.10 (m, $-CH_2$ -), 1.85 ($-CH_2$ -), 1.64 (m, $-CH_2$ -); MS 333 (63, M^+), 227 (21, [M - NHPh]⁺), 214 (51), 213 (21, [M - CH₂NHPh]⁺), 199 (52, [$C_{12}H_{11}N_2O$]⁺), 187 (88, [$C_{11}H_{11}N_2O$]⁺), 146 (72), 106 (100).

Anal. Calcd for C₂₁H₂₃N₃O: C, 75.65; H, 6.95; N, 12.60. Found: C, 75.54; H, 6.92; N, 12.68.

(2-Chloro-3-pyridinyl)(2-hydroxy-1-cyclohexene-1-yl)methanone (8)

This compound, not fully characterized due to its instability, showed ¹H NMR (300 MHz) 15.80 (s, 1H), 8.47 (dd, J = 1.9, 4.8, 1H), 7.62 (dd, J = 1.9, 7.6, 1H), 7.35 (dd, J = 4.8, 7.6, 1H), 2.50 (t, J = 6.5, 2H), 2.11 (t, J = 6.1, 2H), 1.76 (m, 2H), 1.65 (m, 2H); ¹³C NMR (75.4 MHz) 190, 189, 150, 147, 137, 134, 122, 108, 32, 24, 22, 21; FAB-MS (ThioGly) 238 (100, $[M + 1]^+$ for ³⁵Cl), 240 (30, $[M + 1]^+$ for ³⁷Cl), 202 (59, $[C_{12}H_{12}NO_2]^+$).

Compound (8) was eluted before the following compound (12).

6,7,8,9-Tetrahydro-5H-1-benzopyrano[2,3-b]pyridin-5-one (9)

Chromatography of crude 3c over silica gel and elution with CH₂Cl₂ afforded (2-chloro-3-pyridinyl)(2-hydroxy-1-cyclohexene-1-yl)methanone (8) which cyclized overnight upon standing to 9. Crystallization (2-PrOAc) then gave 9 (10.6% from 0.1 mole of 2-chloro-3-pyridinecarbonyl chloride), mp 138.5 -141 °C; IR 1640 (CO), 1605; UV 220 (4.18), 266 (3.96), 297 (3.96), 305 (3.96); ¹H NMR (200 MHz) 8.65 (dd, *J* (2-3) = 5, *J* (2-4) = 1.9, *H* (2)), 8.58 (dd, *J* (4-3) = 8, *J* (4-2) = 1.9, *H* (4)), 7.40 (dd, *J* (3-4) = 8, *J* (3-2) = 5, *H* (3)), 2.76 (t, *J* (6-7) = 5.9, *H* (6)*), 2.58 (t, *J* (9-8) = 5.9 *H* (9)*), 1.99-1.70 (m, 4H, *H* (7) and *H*(8)); ¹³C NMR (50.3 MHz) 178 (*C* (5)), 165 (*C* (10a)), 160 (*C* (4a)), 153 (*C* (2)), 136 (*C* (4)), 122 (*C* (3)), 119 (*C* (9a)*), 118 (*C* (5a)*), 28 (*C* (6)=), 21.9 (*C* (9)=), 21.1 (*C* (7)=), 21.0 (*C* (8)=); MS 201 (100, *M*+), 200 (98, [*M* - 1]+), 122 (68, [(*M* + 1) - C₆H₈]+.

Anal. Calcd for C₁₂H₁₁NO₂: C, 71.62; H, 5.51; N, 6.96. Found: C, 71.49; H, 5.40; N, 6.66.

10-[2-(2-Chloroethoxy)ethyl]-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridin-5(10H)-one (10)

Obtained from preparation of 4k, this compound (10) showed mp 74-75.5 °C; ¹H NMR (300 MHz) 8.72 (dd, 1H, J = 1.9, 7.9), 8.66 (m, 1H), 7.29 (dd, 1H, J = 4.9, 7.8), 4.74 (t, 2H, J = 5.6), 3.87 (t, 2H, J = 5.6), 3.65 (t, 2H, J = 5.6), 3.55 (t, 2H, J = 5.1), 3.00 (t, 2H, J = 6.3), 2.69 (t, 2H, J = 6.3), 1.90 (m, 2H), 1.74 (m, 2H); ¹³C NMR (75.4 MHz) 178, 152, 150.5, 149.9,136, 120, 119.3, 119.0, 71, 70, 44, 43, 28, 23, 22, 21; MS 306 (60, M^+ for ³⁵Cl), 308 (21, M^+ for ³⁷Cl), 213 (100, [C_{13H13N2}O]⁺). 199 (46, [C_{12H11N2}O]⁺).

Anal. Calcd for $C_{16}H_{19}ClN_2O_2 \cdot \frac{1}{2}H_2O$: C, 60.85; H, 6.38; Cl, 11.23; N, 8.87. Found: C, 61.30; H, 6.12; Cl, 11.35; N, 8.74. No acceptable value for C was obtained.

2-[(2-Chloro-3-pyridinyl)carbonyl]-1-cyclohexen-1-yl-2-chloro-3-pyridinecarboxylate (12)

A. From enamine 2b. A solution of 1-(4-morpholinyl)-cyclohexene (2b) (43.9 g, 262 mmol) and NEt3 (59.53 g, 588.3 mmol) in CH₂Cl₂ (350 mL) was added over 60 min to a dry, ice-cooled solution of recrystallized 2-chloro-3-pyridinecarbonyl chloride (100.14 g, 569.0 mmol) in CH₂Cl₂ (750 mL) under N₂. A precipitate formed and the reaction mixture was stirred at 25 °C for 118 h. CH₃CN (500 mL), H₂O (300 mL) and acetic acid (50 mL) were then added and the resulting solution was stirred vigorously for 1 h. Saturated NaCl and saturated NaHCO₃ were then added, the layers separated, the aqueous layer extracted with CH₂Cl₂, the combined organic layers washed with saturated NaHCO3 and saturated NaCl, dried, filtered and concentrated. The solid residue (105.6 g) was chromatographed (50-60% EtOAc-hexanes) under medium pressure and crystallized from 2-PrOAc to afford 12 as white crystals (82.63 g, 83%), mp 114.5-115.5 °C; CI-MS (CH4) 381 (2, [M + 1]+ for ${}^{37}Cl_2$, 379 (9, $[M + 1]^+$ for ${}^{37}Cl^{35}Cl$), 377 (2, $[M + 1]^+$ for ${}^{35}Cl_2$), 343 (3, $[C_{18}H_{14}]^{37}Cl_2$), 341 (8, $[C_{18}H_{14}^{35}CIN_2O_3]^+)$, 142 (33, $[C_6H_3^{37}CINO]^+)$, 140 (100, $[C_6H_3^{35}CINO]^+)$; IR 1755 (enol ester), 1640 (CO); ¹H NMR (200MHz) 8.51 (dd, $J(\alpha-\beta) = 5.2$, $J(\alpha-\gamma) = 2$, pyridine $H(\alpha)$), 8.02 (dd, $J(\alpha-\beta) = 5.2$, γ = 2, pyridine $H(\alpha)$, 7.88 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 2$, $J(\gamma - \beta) = 7.8$, pyridine $H(\gamma)$, 7.56 (dd, $J(\gamma - \alpha) = 7.8$, $J(\gamma - \beta) = 7.8$, $J(\gamma - \beta) = 7.8$, $J(\gamma - \alpha) = 7.8$, 7.8, pyridine $H(\gamma)$, 7.25 (dd, $J(\beta - \gamma) = 7.8$, $J(\beta - \alpha) = 5.2$, pyridine $H(\beta)$, 7.04 (dd, $J(\beta - \gamma) = 7.8$, $J(\beta - \alpha) = 7.8$, $J(\beta -$ 5.2, pyridine H (β)), 2.65-2.35 (m, 4H, H (3) and H (6)), 2.00-1.70 (m, 4H, H (4) and H (5)); ¹³C NMR (75.4 MHz) 192, 161, 157, 153, 151, 150, 147, 141, 138, 136, 126, 124, 122.2, 122.0, 29, 25, 22, 21.

Anal. Calcd for C₁₈H₁₄Cl₂N₂O₃: C, 57.31; H, 3.74; N, 7.43; Cl, 18.80. Found: C, 57.49; H, 3.53; N, 7.32; Cl, 18.82.

This compound (12) was eluted after compound 9. A combination of NMR experiments—principally SINEPT ($^{1}H-^{13}C$), COSY ($^{1}H-^{1}H$), and $^{13}C-^{13}C$ correlation—and X-ray crystallography elucidated and confirmed structure 12. Lists of refined coordinate and estimated standard deviations have been supplied to the Editor for deposition at the Cambridge Crystallographic Data Centre.

B. From Enaminone 3c. Chromatography of crude 3c over silica gel, elution with CH₂Cl₂, and crystallization (2-PrOAc) furnished 12 (9.2% from 0.1 mol of 2-chloro-3-pyridinecarbonyl chloride).

7-(4-Chlorobutyl)-5,6-dihydronaphtho[2,1-b][1,8]naphthyridin-12(7H)-one (14)

This compound (14), prepared like 6, was obtained in a yield of 32% from 3j. CH_2Cl_2 eluted the title compound from silica gel and the product crystallized from EtOAc containing a little MeOH; recrystallization (MeOH) gave an analytical sample, mp 148.5-150.5 °C; IR 1610; ¹H NMR 8.81 (dd, J (9-11) = 2, J (10-11) =

8, H (11)), 8.66 (dd, J (9-11) = 2, J (9-10) = 4.8, H (9)), 7.2-7.05 (complex m, Ar plus H (10)), 4.65 (br t, -CH₂Cl), 3.61 (br t, -CH₂N), 2.96 (m, 2 H (5), and 2 H (6)), 1.92 (m, -(CH₂)₂-); MS 340 (33, M+ for ³⁷Cl), 338 (100, M+ for ³⁵Cl), 303 (34, $[M - Cl]^+$), 275 (11, $[M - Cl - C_2H_4]^+$), 261 (59, $[M - Cl - C_3H_6]^+$), 247 (63, $[M - Cl - C_4H_8]^+$).

Anal. Calcd for C₂₀ H₁₉ClN₂O: C, 70.89; H, 5.65; Cl, 10.46; N, 8.26. Found: C, 70.54; H, 5.65; Cl, 10.20; N, 8.06.

5,6-Dihydro-12H-naphtho[1',2':5,6]pyrano[2,3-b]pyridin-12-one (15)

Chromatography of the crude product (3.85 g) from preparation of pyridone 4m gave pyranone 15. EtOH-CHCl₃ (0.4 : 99.6 by vol.) eluted 14 (0.782 g, 31%, pure according to TLC and ¹H NMR) from silica gel (385 g), and crystallization (2-PrOAc) gave an analytical sample, mp 125-127 °C; IR (KBr) 1640 (CO); ¹H NMR (79.5 MHz) 8.80-8.49 (m, H(1), H(9), and H(11)), 7.55-7.07 (m, H(2), H(3), H(4), and H(10)), 3.02 (s, 2 H(5) and 2 H(6)); MS 249 (100, M^+).

Anal. Calcd for C₁₆H₁₁NO₂: C, 77.09; H, 4.45; N, 5.62. Found: C, 76.88; H, 4.46; N, 5.50.

Anisotropic deshielding of H (1) by the carbonyl group confirmed assignment of structure; the $\Delta\delta$ -value relative to C₆H₆ was +1.5 ppm.

ACKNOWLEDGMENTS

We thank Professor L. Mandell (University of South Florida) for useful discussions. We are indebted to Mrs. J. Nocka (Schering-Plough Research Institute) for help with nomenclature, and are grateful to personnel of Analytical Research Services (Schering-Plough Research Institute).

REFERENCES AND NOTES

- † Part Three in a series of three articles; the accompanying article represents Part Two.
- 1. Part One in this series: Chan, T.-M; Friary, R.; Jones, H.; Schwerdt, J. H.; Seidl, V.; Watnick, A. S.; and Williams, S. M. J. Heterocyclic Chem. 1990, 27, 1135–1142.
- Friary, R.; Ganguly, A.; Schwerdt, J. H.; Seidl, V.; Siegel, M.; Smith, S. and Sybertz, E. U. S. Patent Nos. 5,116,840 (May 26, 1992), 4,988,705 (Jan. 29, 1991), and 4,810,708 (March 7, 1989).
- 3. For a recent review of enamine C-acylations, see Alt, G. H. and Cook, A. G. *Enamines*; Marcel Dekker: New York, 1988; pp. 204–219.
- Having completed the present work, we learned of two pyridone syntheses proceeding by intermolecular enaminone transamination then intramolecular dienaminone transamination: (a) Abdulla, R.F.; Emmick, T.L.; Taylor, H.M. Synth. Commun. 1977, 7, 305-312; (b) Abdulla, R.F.; Fuhr, K.H.; Taylor, H.M. Synth. Commun. 1977, 7, 313-319.
- (a) "Biology and Synthesis of Sch 40120, an Antipsoriatic Agent That Inhibits 5-Lipoxygenation and T-Cell Proliferation", <u>Friary. R.</u>; Billah, M.; Bryant, R. W.; Ganguly, A.; Kung, T. T.; Schwerdt, J. H.; Seidl, V.; Siegel, M. I.; Smith, S. R.; and Watnick, A. S.; 204th National Meeting of the American Chemical Society, Washington, D. C., Book of Abstracts, Part 1, Division of Medicinal Chemistry, Abstract No. 2., 1992; (b) Smith, S. R.; Watnick, A. W.; Bryant, R. W.; Billah, M.; Siegel, M. I. J. Pharm. Exptl. Therapeutics 1992, 262, 721–728; see also Friary, R. J.; Schwerdt, J. H. Tetrahedron 1991, 47, 9981–9984.
- 6. (a) Opitz, G.; Tempel, E. Liebigs Ann. Chem. 1966, 699, 74-87; (b) see also ref. 4 above.
- 7. Bax, A. J. Magn. Reson. 1984, 57, 314.
- Friary, R. J.; Seidl, V.; Schwerdt J. H.; Cohen, M. P.; Hou, D.; and Nafissi, M. Tetrahedron 1993, 49, 7169-7178.
- 9. For general methods, see ref. 1.
- Obtained from the Aldrich Chemical Co. (2a, 2b, 2d) or prepared¹¹ (2c), the enamines used in this work were 1-(1-pyrrolidinyl)-cyclopentene (2a), 1-(4-morpholinyl)-cyclohexene (2b), 1-(3,4-dihydro-2-naphthyl)-pyrrolidine (2d), and 4-methyl-1-(1-pyrrolidinyl)-cyclohexane (2c). ChemoDynamics, Inc., of Garfield, N. J., supplied 2-chloro-3-pyridine- (1a) and 2-chloropyrazinecarbonyl chlorides (1b)
- 11. Peters, J. A.; Van der Toorn, J. M.; Van Bekkum, H. Tetrahedron 1974, 30, 633-640.